majorization procedure - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

majorization procedure - translation to ρωσικά

GEOMETRIC PLACEMENT BASED ON IDEAL DISTANCES
Stress Majorization

majorization procedure      

математика

процедура мажорирования

standard procedure         
SET OF STEP-BY-STEP INSTRUCTIONS COMPILED BY AN ORGANIZATION TO HELP WORKERS CARRY OUT ROUTINE OPERATIONS
Standard Operating Procedures; Standard procedures; Standard Operating Procedure; General operating procedure; General operating procedures; General Operating Procedures; General Operating Procedure; Standard operating procedures; Standing operating procedure; S.O.P.; Standard procedure
типовая процедура
standard procedure         
SET OF STEP-BY-STEP INSTRUCTIONS COMPILED BY AN ORGANIZATION TO HELP WORKERS CARRY OUT ROUTINE OPERATIONS
Standard Operating Procedures; Standard procedures; Standard Operating Procedure; General operating procedure; General operating procedures; General Operating Procedures; General Operating Procedure; Standard operating procedures; Standing operating procedure; S.O.P.; Standard procedure

математика

стандартная процедура

строительное дело

стандартный приём (метод), стандартная методика

Ορισμός

civil procedure
n. the complex and often confusing body of rules and regulations set out in both state (usually Code of Civil Procedure) and federal (Federal Code of Procedure) laws which establish the format under which civil lawsuits are filed, pursued and tried. Civil procedure refers only to form and procedure, and not to the substantive law which gives people the right to sue or defend a lawsuit. See also: civil civil action civil code civil law

Βικιπαίδεια

Stress majorization

Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of n {\displaystyle n} m {\displaystyle m} -dimensional data items, a configuration X {\displaystyle X} of n {\displaystyle n} points in r {\displaystyle r} ( m ) {\displaystyle (\ll m)} -dimensional space is sought that minimizes the so-called stress function σ ( X ) {\displaystyle \sigma (X)} . Usually r {\displaystyle r} is 2 {\displaystyle 2} or 3 {\displaystyle 3} , i.e. the ( n × r ) {\displaystyle (n\times r)} matrix X {\displaystyle X} lists points in 2 {\displaystyle 2-} or 3 {\displaystyle 3-} dimensional Euclidean space so that the result may be visualised (i.e. an MDS plot). The function σ {\displaystyle \sigma } is a cost or loss function that measures the squared differences between ideal ( m {\displaystyle m} -dimensional) distances and actual distances in r-dimensional space. It is defined as:

σ ( X ) = i < j n w i j ( d i j ( X ) δ i j ) 2 {\displaystyle \sigma (X)=\sum _{i<j\leq n}w_{ij}(d_{ij}(X)-\delta _{ij})^{2}}

where w i j 0 {\displaystyle w_{ij}\geq 0} is a weight for the measurement between a pair of points ( i , j ) {\displaystyle (i,j)} , d i j ( X ) {\displaystyle d_{ij}(X)} is the euclidean distance between i {\displaystyle i} and j {\displaystyle j} and δ i j {\displaystyle \delta _{ij}} is the ideal distance between the points (their separation) in the m {\displaystyle m} -dimensional data space. Note that w i j {\displaystyle w_{ij}} can be used to specify a degree of confidence in the similarity between points (e.g. 0 can be specified if there is no information for a particular pair).

A configuration X {\displaystyle X} which minimizes σ ( X ) {\displaystyle \sigma (X)} gives a plot in which points that are close together correspond to points that are also close together in the original m {\displaystyle m} -dimensional data space.

There are many ways that σ ( X ) {\displaystyle \sigma (X)} could be minimized. For example, Kruskal recommended an iterative steepest descent approach. However, a significantly better (in terms of guarantees on, and rate of, convergence) method for minimizing stress was introduced by Jan de Leeuw. De Leeuw's iterative majorization method at each step minimizes a simple convex function which both bounds σ {\displaystyle \sigma } from above and touches the surface of σ {\displaystyle \sigma } at a point Z {\displaystyle Z} , called the supporting point. In convex analysis such a function is called a majorizing function. This iterative majorization process is also referred to as the SMACOF algorithm ("Scaling by MAjorizing a COmplicated Function").

Μετάφραση του &#39majorization procedure&#39 σε Ρωσικά